Papers
Topics
Authors
Recent
2000 character limit reached

Physics-informed solution reconstruction in elasticity and heat transfer using the explicit constraint force method (2505.04875v1)

Published 8 May 2025 in cs.CE and cs.LG

Abstract: One use case of physics-informed neural networks'' (PINNs) is solution reconstruction, which aims to estimate the full-field state of a physical system from sparse measurements. Parameterized governing equations of the system are used in tandem with the measurements to regularize the regression problem. However, in real-world solution reconstruction problems, the parameterized governing equation may be inconsistent with the physical phenomena that give rise to the measurement data. We show that due to assuming consistency between the true and parameterized physics, PINNs-based approaches may fail to satisfy three basic criteria of interpretability, robustness, and data consistency. As we argue, these criteria ensure that (i) the quality of the reconstruction can be assessed, (ii) the reconstruction does not depend strongly on the choice of physics loss, and (iii) that in certain situations, the physics parameters can be uniquely recovered. In the context of elasticity and heat transfer, we demonstrate how standard formulations of the physics loss and techniques for constraining the solution to respect the measurement data lead to differentconstraint forces" -- which we define as additional source terms arising from the constraints -- and that these constraint forces can significantly influence the reconstructed solution. To avoid the potentially substantial influence of the choice of physics loss and method of constraint enforcement on the reconstructed solution, we propose the ``explicit constraint force method'' (ECFM) to gain control of the source term introduced by the constraint. We then show that by satisfying the criteria of interpretability, robustness, and data consistency, this approach leads to more predictable and customizable reconstructions from noisy measurement data, even when the parameterization of the missing physics is inconsistent with the measured system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.