Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep residual learning with product units (2505.04397v1)

Published 7 May 2025 in cs.CV, cs.AI, cs.LG, and eess.IV

Abstract: We propose a deep product-unit residual neural network (PURe) that integrates product units into residual blocks to improve the expressiveness and parameter efficiency of deep convolutional networks. Unlike standard summation neurons, product units enable multiplicative feature interactions, potentially offering a more powerful representation of complex patterns. PURe replaces conventional convolutional layers with 2D product units in the second layer of each residual block, eliminating nonlinear activation functions to preserve structural information. We validate PURe on three benchmark datasets. On Galaxy10 DECaLS, PURe34 achieves the highest test accuracy of 84.89%, surpassing the much deeper ResNet152, while converging nearly five times faster and demonstrating strong robustness to Poisson noise. On ImageNet, PURe architectures outperform standard ResNet models at similar depths, with PURe34 achieving a top-1 accuracy of 80.27% and top-5 accuracy of 95.78%, surpassing deeper ResNet variants (ResNet50, ResNet101) while utilizing significantly fewer parameters and computational resources. On CIFAR-10, PURe consistently outperforms ResNet variants across varying depths, with PURe272 reaching 95.01% test accuracy, comparable to ResNet1001 but at less than half the model size. These results demonstrate that PURe achieves a favorable balance between accuracy, efficiency, and robustness. Compared to traditional residual networks, PURe not only achieves competitive classification performance with faster convergence and fewer parameters, but also demonstrates greater robustness to noise. Its effectiveness across diverse datasets highlights the potential of product-unit-based architectures for scalable and reliable deep learning in computer vision.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.