BuildingBlock: A Hybrid Approach for Structured Building Generation (2505.04051v1)
Abstract: Three-dimensional building generation is vital for applications in gaming, virtual reality, and digital twins, yet current methods face challenges in producing diverse, structured, and hierarchically coherent buildings. We propose BuildingBlock, a hybrid approach that integrates generative models, procedural content generation (PCG), and LLMs to address these limitations. Specifically, our method introduces a two-phase pipeline: the Layout Generation Phase (LGP) and the Building Construction Phase (BCP). LGP reframes box-based layout generation as a point-cloud generation task, utilizing a newly constructed architectural dataset and a Transformer-based diffusion model to create globally consistent layouts. With LLMs, these layouts are extended into rule-based hierarchical designs, seamlessly incorporating component styles and spatial structures. The BCP leverages these layouts to guide PCG, enabling local-customizable, high-quality structured building generation. Experimental results demonstrate BuildingBlock's effectiveness in generating diverse and hierarchically structured buildings, achieving state-of-the-art results on multiple benchmarks, and paving the way for scalable and intuitive architectural workflows.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.