Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Informed Sylvester Normalizing Flows for Bayesian Inference in Magnetic Resonance Spectroscopy (2505.03590v1)

Published 6 May 2025 in stat.ML, cs.LG, eess.SP, and q-bio.QM

Abstract: Magnetic resonance spectroscopy (MRS) is a non-invasive technique to measure the metabolic composition of tissues, offering valuable insights into neurological disorders, tumor detection, and other metabolic dysfunctions. However, accurate metabolite quantification is hindered by challenges such as spectral overlap, low signal-to-noise ratio, and various artifacts. Traditional methods like linear-combination modeling are susceptible to ambiguities and commonly only provide a theoretical lower bound on estimation accuracy in the form of the Cram\'er-Rao bound. This work introduces a Bayesian inference framework using Sylvester normalizing flows (SNFs) to approximate posterior distributions over metabolite concentrations, enhancing quantification reliability. A physics-based decoder incorporates prior knowledge of MRS signal formation, ensuring realistic distribution representations. We validate the method on simulated 7T proton MRS data, demonstrating accurate metabolite quantification, well-calibrated uncertainties, and insights into parameter correlations and multi-modal distributions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.