Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Wasserstein Convergence of Score-based Generative Models under Semiconvexity and Discontinuous Gradients (2505.03432v1)

Published 6 May 2025 in cs.LG, math.OC, math.PR, and stat.ML

Abstract: Score-based Generative Models (SGMs) approximate a data distribution by perturbing it with Gaussian noise and subsequently denoising it via a learned reverse diffusion process. These models excel at modeling complex data distributions and generating diverse samples, achieving state-of-the-art performance across domains such as computer vision, audio generation, reinforcement learning, and computational biology. Despite their empirical success, existing Wasserstein-2 convergence analysis typically assume strong regularity conditions-such as smoothness or strict log-concavity of the data distribution-that are rarely satisfied in practice. In this work, we establish the first non-asymptotic Wasserstein-2 convergence guarantees for SGMs targeting semiconvex distributions with potentially discontinuous gradients. Our upper bounds are explicit and sharp in key parameters, achieving optimal dependence of $O(\sqrt{d})$ on the data dimension $d$ and convergence rate of order one. The framework accommodates a wide class of practically relevant distributions, including symmetric modified half-normal distributions, Gaussian mixtures, double-well potentials, and elastic net potentials. By leveraging semiconvexity without requiring smoothness assumptions on the potential such as differentiability, our results substantially broaden the theoretical foundations of SGMs, bridging the gap between empirical success and rigorous guarantees in non-smooth, complex data regimes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: