The Inverse Drum Machine: Source Separation Through Joint Transcription and Analysis-by-Synthesis (2505.03337v1)
Abstract: We introduce the Inverse Drum Machine (IDM), a novel approach to drum source separation that combines analysis-by-synthesis with deep learning. Unlike recent supervised methods that rely on isolated stems, IDM requires only transcription annotations. It jointly optimizes automatic drum transcription and one-shot drum sample synthesis in an end-to-end framework. By convolving synthesized one-shot samples with estimated onsets-mimicking a drum machine-IDM reconstructs individual drum stems and trains a neural network to match the original mixture. Evaluations on the StemGMD dataset show that IDM achieves separation performance on par with state-of-the-art supervised methods, while substantially outperforming matrix decomposition baselines.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.