Papers
Topics
Authors
Recent
2000 character limit reached

EMORL: Ensemble Multi-Objective Reinforcement Learning for Efficient and Flexible LLM Fine-Tuning (2505.02579v2)

Published 5 May 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Recent advances in reinforcement learning (RL) for LLM fine-tuning show promise in addressing multi-objective tasks but still face significant challenges, including complex objective balancing, low training efficiency, poor scalability, and limited explainability. Leveraging ensemble learning principles, we introduce an Ensemble Multi-Objective RL (EMORL) framework that fine-tunes multiple models with individual objectives while optimizing their aggregation after the training to improve efficiency and flexibility. Our method is the first to aggregate the last hidden states of individual models, incorporating contextual information from multiple objectives. This approach is supported by a hierarchical grid search algorithm that identifies optimal weighted combinations. We evaluate EMORL on counselor reflection generation tasks, using text-scoring LLMs to evaluate the generations and provide rewards during RL fine-tuning. Through comprehensive experiments on the PAIR and Psych8k datasets, we demonstrate the advantages of EMORL against existing baselines: significantly lower and more stable training consumption ($17,529\pm 1,650$ data points and $6,573\pm 147.43$ seconds), improved scalability and explainability, and comparable performance across multiple objectives.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.