Papers
Topics
Authors
Recent
2000 character limit reached

Towards One-shot Federated Learning: Advances, Challenges, and Future Directions

Published 5 May 2025 in cs.LG, cs.AI, and cs.DC | (2505.02426v1)

Abstract: One-shot FL enables collaborative training in a single round, eliminating the need for iterative communication, making it particularly suitable for use in resource-constrained and privacy-sensitive applications. This survey offers a thorough examination of One-shot FL, highlighting its distinct operational framework compared to traditional federated approaches. One-shot FL supports resource-limited devices by enabling single-round model aggregation while maintaining data locality. The survey systematically categorizes existing methodologies, emphasizing advancements in client model initialization, aggregation techniques, and strategies for managing heterogeneous data distributions. Furthermore, we analyze the limitations of current approaches, particularly in terms of scalability and generalization in non-IID settings. By analyzing cutting-edge techniques and outlining open challenges, this survey aspires to provide a comprehensive reference for researchers and practitioners aiming to design and implement One-shot FL systems, advancing the development and adoption of One-shot FL solutions in a real-world, resource-constrained scenario.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.