Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Optimization over Trained (and Sparse) Neural Networks: A Surrogate within a Surrogate (2505.01985v1)

Published 4 May 2025 in math.OC and cs.LG

Abstract: We can approximate a constraint or an objective function that is uncertain or nonlinear with a neural network that we embed in the optimization model. This approach, which is known as constraint learning, faces the challenge that optimization models with neural network surrogates are harder to solve. Such difficulties have motivated studies on model reformulation, specialized optimization algorithms, and - to a lesser extent - pruning of the embedded networks. In this work, we double down on the use of surrogates by applying network pruning to produce a surrogate of the neural network itself. In the context of using a Mixed-Integer Linear Programming (MILP) solver to verify neural networks, we obtained faster adversarial perturbations for dense neural networks by using sparse surrogates, especially - and surprisingly - if not taking the time to finetune the sparse network to make up for the loss in accuracy. In other words, we show that a pruned network with bad classification performance can still be a good - and more efficient - surrogate.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube