Papers
Topics
Authors
Recent
2000 character limit reached

Rank-One Modified Value Iteration (2505.01828v2)

Published 3 May 2025 in math.OC, cs.LG, and stat.ML

Abstract: In this paper, we provide a novel algorithm for solving planning and learning problems of Markov decision processes. The proposed algorithm follows a policy iteration-type update by using a rank-one approximation of the transition probability matrix in the policy evaluation step. This rank-one approximation is closely related to the stationary distribution of the corresponding transition probability matrix, which is approximated using the power method. We provide theoretical guarantees for the convergence of the proposed algorithm to optimal (action-)value function with the same rate and computational complexity as the value iteration algorithm in the planning problem and as the Q-learning algorithm in the learning problem. Through our extensive numerical simulations, however, we show that the proposed algorithm consistently outperforms first-order algorithms and their accelerated versions for both planning and learning problems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 10 likes about this paper.