Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PASCAL: Precise and Efficient ANN- SNN Conversion using Spike Accumulation and Adaptive Layerwise Activation (2505.01730v1)

Published 3 May 2025 in cs.NE and cs.AI

Abstract: Spiking Neural Networks (SNNs) have been put forward as an energy-efficient alternative to Artificial Neural Networks (ANNs) since they perform sparse Accumulate operations instead of the power-hungry Multiply-and-Accumulate operations. ANN-SNN conversion is a widely used method to realize deep SNNs with accuracy comparable to that of ANNs.~\citeauthor{bu2023optimal} recently proposed the Quantization-Clip-Floor-Shift (QCFS) activation as an alternative to ReLU to minimize the accuracy loss during ANN-SNN conversion. Nevertheless, SNN inferencing requires a large number of timesteps to match the accuracy of the source ANN for real-world datasets. In this work, we propose PASCAL, which performs ANN-SNN conversion in such a way that the resulting SNN is mathematically equivalent to an ANN with QCFS-activation, thereby yielding similar accuracy as the source ANN with minimal inference timesteps. In addition, we propose a systematic method to configure the quantization step of QCFS activation in a layerwise manner, which effectively determines the optimal number of timesteps per layer for the converted SNN. Our results show that the ResNet-34 SNN obtained using PASCAL achieves an accuracy of $\approx$74\% on ImageNet with a 64$\times$ reduction in the number of inference timesteps compared to existing approaches.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: