Papers
Topics
Authors
Recent
2000 character limit reached

An Adaptive Framework for Autoregressive Forecasting in CFD Using Hybrid Modal Decomposition and Deep Learning (2505.01531v1)

Published 2 May 2025 in physics.flu-dyn and cs.AI

Abstract: This work presents, to the best of the authors' knowledge, the first generalizable and fully data-driven adaptive framework designed to stabilize deep learning (DL) autoregressive forecasting models over long time horizons, with the goal of reducing the computational cost required in computational fluid dynamics (CFD) simulations.The proposed methodology alternates between two phases: (i) predicting the evolution of the flow field over a selected time interval using a trained DL model, and (ii) updating the model with newly generated CFD data when stability degrades, thus maintaining accurate long-term forecasting. This adaptive retraining strategy ensures robustness while avoiding the accumulation of predictive errors typical in autoregressive models. The framework is validated across three increasingly complex flow regimes, from laminar to turbulent, demonstrating from 30 \% to 95 \% reduction in computational cost without compromising physical consistency or accuracy. Its entirely data-driven nature makes it easily adaptable to a wide range of time-dependent simulation problems. The code implementing this methodology is available as open-source and it will be integrated into the upcoming release of the ModelFLOWs-app.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.