A stochastic Gordon-Loeb model for optimal cybersecurity investment under clustered attacks (2505.01221v1)
Abstract: We develop a continuous-time stochastic model for optimal cybersecurity investment under the threat of cyberattacks. The arrival of attacks is modeled using a Hawkes process, capturing the empirically relevant feature of clustering in cyberattacks. Extending the Gordon-Loeb model, each attack may result in a breach, with breach probability depending on the system's vulnerability. We aim at determining the optimal cybersecurity investment to reduce vulnerability. The problem is cast as a two-dimensional Markovian stochastic optimal control problem and solved using dynamic programming methods. Numerical results illustrate how accounting for attack clustering leads to more responsive and effective investment policies, offering significant improvements over static and Poisson-based benchmark strategies. Our findings underscore the value of incorporating realistic threat dynamics into cybersecurity risk management.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.