Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Large Language Model Planning with Action Sequence Similarity (2505.01009v1)

Published 2 May 2025 in cs.AI

Abstract: Planning is essential for artificial intelligence systems to look ahead and proactively determine a course of actions to reach objectives in the virtual and real world. Recent work on LLMs sheds light on their planning capability in various tasks. However, it remains unclear what signals in the context influence the model performance. In this work, we explore how to improve the model planning capability through in-context learning (ICL), specifically, what signals can help select the exemplars. Through extensive experiments, we observe that commonly used problem similarity may result in false positives with drastically different plans, which can mislead the model. In response, we propose to sample and filter exemplars leveraging plan side action sequence similarity (AS). We propose GRASE-DC: a two-stage pipeline that first re-samples high AS exemplars and then curates the selected exemplars with dynamic clustering on AS to achieve a balance of relevance and diversity. Our experimental result confirms that GRASE-DC achieves significant performance improvement on various planning tasks (up to ~11-40 point absolute accuracy improvement with 27.3% fewer exemplars needed on average). With GRASE-DC* + VAL, where we iteratively apply GRASE-DC with a validator, we are able to even boost the performance by 18.9% more. Extensive analysis validates the consistent performance improvement of GRASE-DC with various backbone LLMs and on both classical planning and natural language planning benchmarks. GRASE-DC can further boost the planning accuracy by ~24 absolute points on harder problems using simpler problems as exemplars over a random baseline. This demonstrates its ability to generalize to out-of-distribution problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 13 likes.

Upgrade to Pro to view all of the tweets about this paper: