Papers
Topics
Authors
Recent
2000 character limit reached

Seeking to Collide: Online Safety-Critical Scenario Generation for Autonomous Driving with Retrieval Augmented Large Language Models

Published 2 May 2025 in cs.AI and cs.RO | (2505.00972v1)

Abstract: Simulation-based testing is crucial for validating autonomous vehicles (AVs), yet existing scenario generation methods either overfit to common driving patterns or operate in an offline, non-interactive manner that fails to expose rare, safety-critical corner cases. In this paper, we introduce an online, retrieval-augmented LLM framework for generating safety-critical driving scenarios. Our method first employs an LLM-based behavior analyzer to infer the most dangerous intent of the background vehicle from the observed state, then queries additional LLM agents to synthesize feasible adversarial trajectories. To mitigate catastrophic forgetting and accelerate adaptation, we augment the framework with a dynamic memorization and retrieval bank of intent-planner pairs, automatically expanding its behavioral library when novel intents arise. Evaluations using the Waymo Open Motion Dataset demonstrate that our model reduces the mean minimum time-to-collision from 1.62 to 1.08 s and incurs a 75% collision rate, substantially outperforming baselines.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.