Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SSRLBot: Designing and Developing a Large Language Model-based Agent using Socially Shared Regulated Learning (2505.00945v2)

Published 2 May 2025 in cs.HC

Abstract: LLM--based agents have emerged as pivotal tools in assisting human experts across various fields by transforming complex tasks into more efficient workflows and providing actionable stakeholder insights. Despite their potential, the application of LLM-based agents for medical education remains underexplored. The study aims to assist in evaluating the students' process and outcomes on medical case diagnosis and discussion while incorporating the theoretical framework of Socially Shared Regulation of Learning (SSRL) to assess student performance. SSRL emphasizes metacognitive, cognitive, motivational, and emotional interactions, highlighting the collaborative management of learning processes to improve decision-making outcomes. Grounded in SSRL theory, this tool paper introduces SSRLBot, an LLM-based agent designed to enable team members to reflect on their diagnostic performance and the key SSRL skills that foster team success. SSRLBot's core functions include summarizing dialogue content, analyzing participants' SSRL skills, and evaluating students' diagnostic results. Meanwhile, we evaluated SSRLBot through diagnostic conversation data collected from six groups (12 participants, 1926 conversational turns). Results showed that SSRLBot can deliver detailed, theory-aligned evaluations, link specific behaviors to SSRL dimensions, and offer actionable recommendations for improving teamwork. The findings address a critical gap in medical education, advancing the application of LLM agents to enhance team-based decision-making and collaboration in high-stakes environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: