Papers
Topics
Authors
Recent
2000 character limit reached

Learning Neural Control Barrier Functions from Offline Data with Conservatism (2505.00908v1)

Published 1 May 2025 in cs.LG, cs.FL, cs.RO, cs.SY, and eess.SY

Abstract: Safety filters, particularly those based on control barrier functions, have gained increased interest as effective tools for safe control of dynamical systems. Existing correct-by-construction synthesis algorithms, however, suffer from the curse of dimensionality. Deep learning approaches have been proposed in recent years to address this challenge. In this paper, we contribute to this line of work by proposing an algorithm for training control barrier functions from offline datasets. Our algorithm trains the filter to not only prevent the system from reaching unsafe states but also out-of-distribution ones, at which the filter would be unreliable. It is inspired by Conservative Q-learning, an offline reinforcement learning algorithm. We call its outputs Conservative Control Barrier Functions (CCBFs). Our empirical results demonstrate that CCBFs outperform existing methods in maintaining safety and out-of-distribution avoidance while minimally affecting task performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.