Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Unit Harmonization in Medical Informatics via Bayesian-Optimized Retrieval and Transformer-Based Re-ranking (2505.00810v2)

Published 1 May 2025 in cs.LG

Abstract: Objective: To develop and evaluate a scalable methodology for harmonizing inconsistent units in large-scale clinical datasets, addressing a key barrier to data interoperability. Materials and Methods: We designed a novel unit harmonization system combining BM25, sentence embeddings, Bayesian optimization, and a bidirectional transformer based binary classifier for retrieving and matching laboratory test entries. The system was evaluated using the Optum Clinformatics Datamart dataset (7.5 billion entries). We implemented a multi-stage pipeline: filtering, identification, harmonization proposal generation, automated re-ranking, and manual validation. Performance was assessed using Mean Reciprocal Rank (MRR) and other standard information retrieval metrics. Results: Our hybrid retrieval approach combining BM25 and sentence embeddings (MRR: 0.8833) significantly outperformed both lexical-only (MRR: 0.7985) and embedding-only (MRR: 0.5277) approaches. The transformer-based reranker further improved performance (absolute MRR improvement: 0.10), bringing the final system MRR to 0.9833. The system achieved 83.39\% precision at rank 1 and 94.66\% recall at rank 5. Discussion: The hybrid architecture effectively leverages the complementary strengths of lexical and semantic approaches. The reranker addresses cases where initial retrieval components make errors due to complex semantic relationships in medical terminology. Conclusion: Our framework provides an efficient, scalable solution for unit harmonization in clinical datasets, reducing manual effort while improving accuracy. Once harmonized, data can be reused seamlessly in different analyses, ensuring consistency across healthcare systems and enabling more reliable multi-institutional studies and meta-analyses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets