Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Free-energy perturbation in the exchange-correlation space accelerated by machine learning: Application to silica polymorphs (2505.00789v1)

Published 1 May 2025 in cond-mat.mtrl-sci

Abstract: We propose a free-energy-perturbation approach accelerated by machine-learning potentials to efficiently compute transition temperatures and entropies for all rungs of Jacob's ladder. We apply the approach to the dynamically stabilized phases of SiO$_2$, which are characterized by challengingly small transition entropies. All investigated functionals from rungs 1-4 fail to predict an accurate transition temperature by 25-200%. Only by ascending to the fifth rung, within the random phase approximation, an accurate prediction is possible, giving a relative error of 5%. We provide a clear-cut procedure and relevant data to the community for, e.g., developing and evaluating new functionals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube