Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Beyond Affine Loops: A Geometric Approach to Program Synthesis (2505.00620v1)

Published 1 May 2025 in cs.SC and math.AG

Abstract: Ensuring software correctness remains a fundamental challenge in formal program verification. One promising approach relies on finding polynomial invariants for loops. Polynomial invariants are properties of a program loop that hold before and after each iteration. Generating polynomial invariants is a crucial task for loops, but it is an undecidable problem in the general case. Recently, an alternative approach to this problem has emerged, focusing on synthesizing loops from invariants. However, existing methods only synthesize affine loops without guard conditions from polynomial invariants. In this paper, we address a more general problem, allowing loops to have polynomial update maps with a given structure, inequations in the guard condition, and polynomial invariants of arbitrary form. In this paper, we use algebraic geometry tools to design and implement an algorithm that computes a finite set of polynomial equations whose solutions correspond to all loops satisfying the given polynomial invariants. In other words, we reduce the problem of synthesizing loops to finding solutions of polynomial systems within a specified subset of the complex numbers. The latter is handled in our software using an SMT solver.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.