Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conformal changepoint localization (2505.00292v2)

Published 1 May 2025 in math.ST, eess.SP, stat.ME, and stat.TH

Abstract: Changepoint localization is the problem of estimating the index at which a change occurred in the data generating distribution of an ordered list of data, or declaring that no change occurred. We present the broadly applicable CONCH (CONformal CHangepoint localization) algorithm, which uses a matrix of conformal p-values to produce a confidence interval for a (single) changepoint under the mild assumption that the pre-change and post-change distributions are each exchangeable. We exemplify the CONCH algorithm on a variety of synthetic and real-world datasets, including using black-box pre-trained classifiers to detect changes in sequences of images or text.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube