Large Language Models as AI Agents for Digital Atoms and Molecules: Catalyzing a New Era in Computational Biophysics (2505.00270v2)
Abstract: In computational biophysics, where molecular data is expanding rapidly and system complexity is increasing exponentially, LLMs and agent-based systems are fundamentally reshaping the field. This perspective article examines the recent advances at the intersection of LLMs, intelligent agents, and scientific computation, with a focus on biophysical computation. Building on these advancements, we introduce ADAM (Agent for Digital Atoms and Molecules), an innovative multi-agent LLM-based framework. ADAM employs cutting-edge AI architectures to reshape scientific workflows through a modular design. It adopts a hybrid neural-symbolic architecture that combines LLM-driven semantic tools with deterministic symbolic computations. Moreover, its ADAM Tool Protocol (ATP) enables asynchronous, database-centric tool orchestration, fostering community-driven extensibility. Despite the significant progress made, ongoing challenges call for further efforts in establishing benchmarking standards, optimizing foundational models and agents, building an open collaborative ecosystem and developing personalized memory modules. ADAM is accessible at https://sidereus-ai.com.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.