Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large Language Models as AI Agents for Digital Atoms and Molecules: Catalyzing a New Era in Computational Biophysics (2505.00270v2)

Published 1 May 2025 in physics.comp-ph and physics.bio-ph

Abstract: In computational biophysics, where molecular data is expanding rapidly and system complexity is increasing exponentially, LLMs and agent-based systems are fundamentally reshaping the field. This perspective article examines the recent advances at the intersection of LLMs, intelligent agents, and scientific computation, with a focus on biophysical computation. Building on these advancements, we introduce ADAM (Agent for Digital Atoms and Molecules), an innovative multi-agent LLM-based framework. ADAM employs cutting-edge AI architectures to reshape scientific workflows through a modular design. It adopts a hybrid neural-symbolic architecture that combines LLM-driven semantic tools with deterministic symbolic computations. Moreover, its ADAM Tool Protocol (ATP) enables asynchronous, database-centric tool orchestration, fostering community-driven extensibility. Despite the significant progress made, ongoing challenges call for further efforts in establishing benchmarking standards, optimizing foundational models and agents, building an open collaborative ecosystem and developing personalized memory modules. ADAM is accessible at https://sidereus-ai.com.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We're still in the process of identifying open problems mentioned in this paper. Please check back in a few minutes.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 8 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube