Internal solitary and cnoidal waves of moderate amplitude in a two-layer fluid: the extended KdV equation approximation (2504.21513v1)
Abstract: We consider travelling internal waves in a two-layer fluid with linear shear currents from the viewpoint of the extended Korteweg-de Vries (eKdV) equation derived from a strongly-nonlinear long-wave model. Using an asymptotic Kodama-Fokas-Liu near-identity transformation, we map the eKdV equation to the Gardner equation. This improved Gardner equation has a different cubic nonlinearity coefficient and an additional transport term compared to the frequently used truncated Gardner equation. We then construct approximate solitary and cnoidal wave solutions of the eKdV equation using this mapping and test validity and performance of these approximations, as well as performance of the truncated and improved Gardner and eKdV equations, by comparison with direct numerical simulations of the strongly-nonlinear two-layer long-wave parent system in the absence of currents.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.