Climate Science and Control Engineering: Insights, Parallels, and Connections (2504.21153v2)
Abstract: Climate science is the multidisciplinary field that studies the Earth's climate and its evolution. At the very core of climate science are indispensable climate models that predict future climate scenarios, inform policy decisions, and dictate how a country's economy should change in light of the changing climate. Climate models capture a wide range of interacting dynamic processes via extremely complex ordinary and partial differential equations. To model these large-scale complex processes, climate science leverages supercomputers, advanced simulations, and statistical methods to predict future climate. An area of engineering that is rarely studied in climate science is control engineering. Given that climate systems are inherently dynamic, it is intuitive to analyze them within the framework of dynamic system science. This perspective has been underexplored in the literature. In this manuscript, we provide a tutorial that: (i) introduces the control engineering community to climate dynamics and modeling, including spatiotemporal scales and challenges in climate modeling; (ii) offers a fresh perspective on climate models from a control systems viewpoint; and (iii) explores the relevance and applicability of various advanced graph and network control-based approaches in building a physics-informed framework for learning, control and estimation in climate systems. We also present simple and then more complex climate models, depicting fundamental ideas and processes that are instrumental in building climate change projections. This tutorial also builds parallels and observes connections between various contemporary problems at the forefront of climate science and their control theoretic counterparts. We specifically observe that an abundance of climate science problems can be linguistically reworded and mathematically framed as control theoretic ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.