Papers
Topics
Authors
Recent
2000 character limit reached

SpaRE: Enhancing Spatial Reasoning in Vision-Language Models with Synthetic Data (2504.20648v1)

Published 29 Apr 2025 in cs.CV and cs.AI

Abstract: Vision-LLMs (VLMs) work well in tasks ranging from image captioning to visual question answering (VQA), yet they struggle with spatial reasoning, a key skill for understanding our physical world that humans excel at. We find that spatial relations are generally rare in widely used VL datasets, with only a few being well represented, while most form a long tail of underrepresented relations. This gap leaves VLMs ill-equipped to handle diverse spatial relationships. To bridge it, we construct a synthetic VQA dataset focused on spatial reasoning generated from hyper-detailed image descriptions in Localized Narratives, DOCCI, and PixMo-Cap. Our dataset consists of 455k samples containing 3.4 million QA pairs. Trained on this dataset, our Spatial-Reasoning Enhanced (SpaRE) VLMs show strong improvements on spatial reasoning benchmarks, achieving up to a 49% performance gain on the What's Up benchmark, while maintaining strong results on general tasks. Our work narrows the gap between human and VLM spatial reasoning and makes VLMs more capable in real-world tasks such as robotics and navigation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.