Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification (2504.20509v1)

Published 29 Apr 2025 in cs.CV

Abstract: The Mamba model has recently demonstrated strong potential in hyperspectral image (HSI) classification, owing to its ability to perform context modeling with linear computational complexity. However, existing Mamba-based methods usually neglect the spectral and spatial directional characteristics related to heterogeneous objects in hyperspectral scenes, leading to limited classification performance. To address these issues, we propose MambaMoE, a novel spectral-spatial mixture-of-experts framework, representing the first MoE-based approach in the HSI classification community. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that leverages sparse expert activation to enable adaptive spectral-spatial modeling. Furthermore, we introduce an uncertainty-guided corrective learning (UGCL) strategy to encourage the model's attention toward complex regions prone to prediction ambiguity. Extensive experiments on multiple public HSI benchmarks demonstrate that MambaMoE achieves state-of-the-art performance in both accuracy and efficiency compared to existing advanced approaches, especially for Mamba-based methods. Code will be released.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.