Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coreset selection for the Sinkhorn divergence and generic smooth divergences (2504.20194v2)

Published 28 Apr 2025 in stat.ML and cs.LG

Abstract: We introduce CO2, an efficient algorithm to produce convexly-weighted coresets with respect to generic smooth divergences. By employing a functional Taylor expansion, we show a local equivalence between sufficiently regular losses and their second order approximations, reducing the coreset selection problem to maximum mean discrepancy minimization. We apply CO2 to the Sinkhorn divergence, providing a novel sampling procedure that requires poly-logarithmically many data points to match the approximation guarantees of random sampling. To show this, we additionally verify several new regularity properties for entropically regularized optimal transport of independent interest. Our approach leads to a new perspective linking coreset selection and kernel quadrature to classical statistical methods such as moment and score matching. We showcase this method with a practical application of subsampling image data, and highlight key directions to explore for improved algorithmic efficiency and theoretical guarantees.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: