Lossy Source Coding with Focal Loss (2504.19913v1)
Abstract: Focal loss has recently gained significant popularity, particularly in tasks like object detection where it helps to address class imbalance by focusing more on hard-to-classify examples. This work proposes the focal loss as a distortion measure for lossy source coding. The paper provides single-shot converse and achievability bounds. These bounds are then used to characterize the distortion-rate trade-off in the infinite blocklength, which is shown to be the same as that for the log loss case. In the non-asymptotic case, the difference between focal loss and log loss is illustrated through a series of simulations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.