Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Serverless Cold Start: Reducing Library Loading Overhead by Profile-guided Optimization (2504.19283v1)

Published 27 Apr 2025 in cs.DC and cs.PF

Abstract: Serverless computing abstracts away server management, enabling automatic scaling, efficient resource utilization, and cost-effective pricing models. However, despite these advantages, it faces the significant challenge of cold-start latency, adversely impacting end-to-end performance. Our study shows that many serverless functions initialize libraries that are rarely or never used under typical workloads, thus introducing unnecessary overhead. Although existing static analysis techniques can identify unreachable libraries, they fail to address workload-dependent inefficiencies, resulting in limited performance improvements. To overcome these limitations, we present SLIMSTART, a profile-guided optimization tool designed to identify and mitigate inefficient library usage patterns in serverless applications. By leveraging statistical sampling and call-path profiling, SLIMSTART collects runtime library usage data, generates detailed optimization reports, and applies automated code transformations to reduce cold-start overhead. Furthermore, SLIMSTART integrates seamlessly into CI/CD pipelines, enabling adaptive monitoring and continuous optimizations tailored to evolving workloads. Through extensive evaluation across three benchmark suites and four real-world serverless applications, SLIMSTART achieves up to a 2.30X speedup in initialization latency, a 2.26X improvement in end-to-end latency, and a 1.51X reduction in memory usage, demonstrating its effectiveness in addressing cold-start inefficiencies and optimizing resource utilization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube