Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sketch2Anim: Towards Transferring Sketch Storyboards into 3D Animation (2504.19189v1)

Published 27 Apr 2025 in cs.GR and cs.CV

Abstract: Storyboarding is widely used for creating 3D animations. Animators use the 2D sketches in storyboards as references to craft the desired 3D animations through a trial-and-error process. The traditional approach requires exceptional expertise and is both labor-intensive and time-consuming. Consequently, there is a high demand for automated methods that can directly translate 2D storyboard sketches into 3D animations. This task is under-explored to date and inspired by the significant advancements of motion diffusion models, we propose to address it from the perspective of conditional motion synthesis. We thus present Sketch2Anim, composed of two key modules for sketch constraint understanding and motion generation. Specifically, due to the large domain gap between the 2D sketch and 3D motion, instead of directly conditioning on 2D inputs, we design a 3D conditional motion generator that simultaneously leverages 3D keyposes, joint trajectories, and action words, to achieve precise and fine-grained motion control. Then, we invent a neural mapper dedicated to aligning user-provided 2D sketches with their corresponding 3D keyposes and trajectories in a shared embedding space, enabling, for the first time, direct 2D control of motion generation. Our approach successfully transfers storyboards into high-quality 3D motions and inherently supports direct 3D animation editing, thanks to the flexibility of our multi-conditional motion generator. Comprehensive experiments and evaluations, and a user perceptual study demonstrate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube