Papers
Topics
Authors
Recent
Search
2000 character limit reached

Revisiting Algorithmic Audits of TikTok: Poor Reproducibility and Short-term Validity of Findings

Published 25 Apr 2025 in cs.IR and cs.SI | (2504.18140v1)

Abstract: Social media platforms are constantly shifting towards algorithmically curated content based on implicit or explicit user feedback. Regulators, as well as researchers, are calling for systematic social media algorithmic audits as this shift leads to enclosing users in filter bubbles and leading them to more problematic content. An important aspect of such audits is the reproducibility and generalisability of their findings, as it allows to draw verifiable conclusions and audit potential changes in algorithms over time. In this work, we study the reproducibility of the existing sockpuppeting audits of TikTok recommender systems, and the generalizability of their findings. In our efforts to reproduce the previous works, we find multiple challenges stemming from social media platform changes and content evolution, but also the research works themselves. These drawbacks limit the audit reproducibility and require an extensive effort altogether with inevitable adjustments to the auditing methodology. Our experiments also reveal that these one-shot audit findings often hold only in the short term, implying that the reproducibility and generalizability of the audits heavily depend on the methodological choices and the state of algorithms and content on the platform. This highlights the importance of reproducible audits that allow us to determine how the situation changes in time.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 19 likes about this paper.