Papers
Topics
Authors
Recent
2000 character limit reached

Causality-Driven Neural Network Repair: Challenges and Opportunities (2504.17946v1)

Published 24 Apr 2025 in cs.LG

Abstract: Deep Neural Networks (DNNs) often rely on statistical correlations rather than causal reasoning, limiting their robustness and interpretability. While testing methods can identify failures, effective debugging and repair remain challenging. This paper explores causal inference as an approach primarily for DNN repair, leveraging causal debugging, counterfactual analysis, and structural causal models (SCMs) to identify and correct failures. We discuss in what ways these techniques support fairness, adversarial robustness, and backdoor mitigation by providing targeted interventions. Finally, we discuss key challenges, including scalability, generalization, and computational efficiency, and outline future directions for integrating causality-driven interventions to enhance DNN reliability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.