A Systematic Study on the Design of Odd-Sized Highly Nonlinear Boolean Functions via Evolutionary Algorithms (2504.17666v1)
Abstract: This paper focuses on the problem of evolving Boolean functions of odd sizes with high nonlinearity, a property of cryptographic relevance. Despite its simple formulation, this problem turns out to be remarkably difficult. We perform a systematic evaluation by considering three solution encodings and four problem instances, analyzing how well different types of evolutionary algorithms behave in finding a maximally nonlinear Boolean function. Our results show that genetic programming generally outperforms other evolutionary algorithms, although it falls short of the best-known results achieved by ad-hoc heuristics. Interestingly, by adding local search and restricting the space to rotation symmetric Boolean functions, we show that a genetic algorithm with the bitstring encoding manages to evolve a $9$-variable Boolean function with nonlinearity 241.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.