Papers
Topics
Authors
Recent
2000 character limit reached

On Developers' Self-Declaration of AI-Generated Code: An Analysis of Practices (2504.16485v1)

Published 23 Apr 2025 in cs.SE and cs.AI

Abstract: AI code generation tools have gained significant popularity among developers, who use them to assist in software development due to their capability to generate code. Existing studies mainly explored the quality, e.g., correctness and security, of AI-generated code, while in real-world software development, the prerequisite is to distinguish AI-generated code from human-written code, which emphasizes the need to explicitly declare AI-generated code by developers. To this end, this study intends to understand the ways developers use to self-declare AI-generated code and explore the reasons why developers choose to self-declare or not. We conducted a mixed-methods study consisting of two phases. In the first phase, we mined GitHub repositories and collected 613 instances of AI-generated code snippets. In the second phase, we conducted a follow-up industrial survey, which received 111 valid responses. Our research revealed the practices followed by developers to self-declare AI-generated code. Most practitioners (76.6%) always or sometimes self-declare AI-generated code. In contrast, other practitioners (23.4%) noted that they never self-declare AI-generated code. The reasons for self-declaring AI-generated code include the need to track and monitor the code for future review and debugging, and ethical considerations. The reasons for not self-declaring AI-generated code include extensive modifications to AI-generated code and the developers' perception that self-declaration is an unnecessary activity. We finally provided guidelines for practitioners to self-declare AI-generated code, addressing ethical and code quality concerns.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.