Quality of explanation of xAI from the prespective of Italian end-users: Italian version of System Causability Scale (SCS) (2504.16193v1)
Abstract: Background and aim: Considering the scope of the application of artificial intelligence beyond the field of computer science, one of the concerns of researchers is to provide quality explanations about the functioning of algorithms based on artificial intelligence and the data extracted from it. The purpose of the present study is to validate the Italian version of system causability scale (I-SCS) to measure the quality of explanations provided in a xAI. Method: For this purpose, the English version, initially provided in 2020 in coordination with the main developer, was utilized. The forward-backward translation method was applied to ensure accuracy. Finally, these nine steps were completed by calculating the content validity index/ratio and conducting cognitive interviews with representative end users. Results: The original version of the questionnaire consisted of 10 questions. However, based on the obtained indexes (CVR below 0.49), one question (Question 8) was entirely removed. After completing the aforementioned steps, the Italian version contained 9 questions. The representative sample of Italian end users fully comprehended the meaning and content of the questions in the Italian version. Conclusion: The Italian version obtained in this study can be used in future research studies as well as in the field by xAI developers. This tool can be used to measure the quality of explanations provided for an xAI system in Italian culture.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.