Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

AlphaGrad: Non-Linear Gradient Normalization Optimizer (2504.16020v2)

Published 22 Apr 2025 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: We introduce AlphaGrad, a memory-efficient, conditionally stateless optimizer addressing the memory overhead and hyperparameter complexity of adaptive methods like Adam. AlphaGrad enforces scale invariance via tensor-wise L2 gradient normalization followed by a smooth hyperbolic tangent transformation, $g' = \tanh(\alpha \cdot \tilde{g})$, controlled by a single steepness parameter $\alpha$. Our contributions include: (1) the AlphaGrad algorithm formulation; (2) a formal non-convex convergence analysis guaranteeing stationarity; (3) extensive empirical evaluation on diverse RL benchmarks (DQN, TD3, PPO). Compared to Adam, AlphaGrad demonstrates a highly context-dependent performance profile. While exhibiting instability in off-policy DQN, it provides enhanced training stability with competitive results in TD3 (requiring careful $\alpha$ tuning) and achieves substantially superior performance in on-policy PPO. These results underscore the critical importance of empirical $\alpha$ selection, revealing strong interactions between the optimizer's dynamics and the underlying RL algorithm. AlphaGrad presents a compelling alternative optimizer for memory-constrained scenarios and shows significant promise for on-policy learning regimes where its stability and efficiency advantages can be particularly impactful.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 6 likes.