Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Benchmarking machine learning models for predicting aerofoil performance (2504.15993v1)

Published 22 Apr 2025 in physics.flu-dyn and cs.LG

Abstract: This paper investigates the capability of Neural Networks (NNs) as alternatives to the traditional methods to analyse the performance of aerofoils used in the wind and tidal energy industry. The current methods used to assess the characteristic lift and drag coefficients include Computational Fluid Dynamics (CFD), thin aerofoil and panel methods, all face trade-offs between computational speed and the accuracy of the results and as such NNs have been investigated as an alternative with the aim that it would perform both quickly and accurately. As such, this paper provides a benchmark for the windAI_bench dataset published by the National Renewable Energy Laboratory (NREL) in the USA. In order to validate the methodology of the benchmarking, the AirfRANS {\tt arXiv:2212.07564v3} dataset is used as both a starting point and a point of comparison. This study evaluates four neural networks (MLP, PointNet, GraphSAGE, GUNet) trained on a range aerofoils at 25 angles of attack (4$\circ$ to 20$\circ$). to predict fluid flow and calculate lift coefficients ($C_L$) via the panel method. GraphSAGE and GUNet performed well during the testing phase, but underperformed during validation. Accordingly, this paper has identified PointNet and MLP as the two strongest models tested, however whilst the results from MLP are more commonly correct for predicting the behaviour of the fluid, the results from PointNet provide the more accurate results for calculating $C_L$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube