Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

TVR: Automotive System Requirement Traceability Validation and Recovery Through Retrieval-Augmented Generation (2504.15427v2)

Published 21 Apr 2025 in cs.SE

Abstract: In automotive software development, as well as other domains, traceability between stakeholder requirements and system requirements is crucial to ensure consistency, correctness, and regulatory compliance. However, erroneous or missing traceability relationships often arise due to improper propagation of requirement changes or human errors in requirement mapping, leading to inconsistencies and increased maintenance costs. Existing approaches do not address traceability between stakeholder and system requirements, rely on open-source data -- as opposed to automotive (or any industry) data -- and do not address the validation of manual links established by engineers. Additionally, automotive requirements often exhibit variations in the way they are expressed, posing challenges for supervised models requiring training. The recent advancements in LLMs provide new opportunities to address these challenges. In this paper, we introduce TVR, a requirement Traceability Validation and Recovery approach primarily targeting automotive systems, leveraging LLMs enhanced with retrieval-augmented generation (RAG). TVR is designed to validate existing traceability links and recover missing ones with high accuracy. We empirically evaluate TVR on automotive requirements, achieving 98.87% accuracy in traceability validation and 85.50% correctness in traceability recovery. Additionally, TVR demonstrates strong robustness, achieving 97.13% in accuracy when handling unseen requirements variations. The results highlight the practical effectiveness of RAG-based LLM approaches in industrial settings, offering a promising solution for improving requirements traceability in complex automotive systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.