Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Efficient Document Retrieval with G-Retriever (2504.14955v1)

Published 21 Apr 2025 in cs.LG

Abstract: Textual data question answering has gained significant attention due to its growing applicability. Recently, a novel approach leveraging the Retrieval-Augmented Generation (RAG) method was introduced, utilizing the Prize-Collecting Steiner Tree (PCST) optimization for sub-graph construction. However, this method focused solely on node attributes, leading to incomplete contextual understanding. In this paper, we propose an enhanced approach that replaces the PCST method with an attention-based sub-graph construction technique, enabling more efficient and context-aware retrieval. Additionally, we encode both node and edge attributes, leading to richer graph representations. Our method also incorporates an improved projection layer and multi-head attention pooling for better alignment with LLMs. Experimental evaluations on the WebQSP dataset demonstrate that our approach is competitive and achieves marginally better results compared to the original method, underscoring its potential for more accurate question answering.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube