Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Noise Distributions for Differential Privacy (2504.14730v2)

Published 20 Apr 2025 in cs.IT and math.IT

Abstract: We propose a unified optimization framework for designing continuous and discrete noise distributions that ensure differential privacy (DP) by minimizing R\'enyi DP, a variant of DP, under a cost constraint. R\'enyi DP has the advantage that by considering different values of the R\'enyi parameter $\alpha$, we can tailor our optimization for any number of compositions. To solve the optimization problem, we reduce it to a finite-dimensional convex formulation and perform preconditioned gradient descent. The resulting noise distributions are then compared to their Gaussian and Laplace counterparts. Numerical results demonstrate that our optimized distributions are consistently better, with significant improvements in $(\varepsilon, \delta)$-DP guarantees in the moderate composition regimes, compared to Gaussian and Laplace distributions with the same variance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.