Papers
Topics
Authors
Recent
2000 character limit reached

Harnessing Generative LLMs for Enhanced Financial Event Entity Extraction Performance (2504.14633v1)

Published 20 Apr 2025 in cs.CL

Abstract: Financial event entity extraction is a crucial task for analyzing market dynamics and building financial knowledge graphs, yet it presents significant challenges due to the specialized language and complex structures in financial texts. Traditional approaches often rely on sequence labeling models, which can struggle with long-range dependencies and the inherent complexity of extracting multiple, potentially overlapping entities. Motivated by the advanced language understanding and generative capabilities of LLMs, we propose a novel method that reframes financial event entity extraction as a text-to-structured-output generation task. Our approach involves fine-tuning a pre-trained LLM using Parameter-Efficient Fine-Tuning (PEFT) to directly generate a structured representation, such as a JSON object, containing the extracted entities and their precise character spans from the input text. We evaluate our method on the challenging CCKS 2019 Financial Event Entity Extraction dataset, comparing its performance against strong sequence labeling baselines, including SEBERTNets and sebertNets. Experimental results demonstrate that our generative LLM method achieves a new state-of-the-art F1 score on this benchmark, significantly outperforming previous methods. Through detailed quantitative analysis across event types, entity types, and instance complexity, as well as human evaluation, we show that our approach is more effective at handling the nuances of financial text and extracting high-quality entities. This work validates the potential of applying generative LLMs directly to complex, domain-specific information extraction tasks requiring structured output.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.