Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum-Enhanced Weight Optimization for Neural Networks Using Grover's Algorithm (2504.14568v1)

Published 20 Apr 2025 in quant-ph and cs.LG

Abstract: The main approach to hybrid quantum-classical neural networks (QNN) is employing quantum computing to build a neural network (NN) that has quantum features, which is then optimized classically. Here, we propose a different strategy: to use quantum computing in order to optimize the weights of a classical NN. As such, we design an instance of Grover's quantum search algorithm to accelerate the search for the optimal parameters of an NN during the training process, a task traditionally performed using the backpropagation algorithm with the gradient descent method. Indeed, gradient descent has issues such as exploding gradient, vanishing gradient, or convexity problem. Other methods tried to address such issues with strategies like genetic searches, but they carry additional problems like convergence consistency. Our original method avoids these issues -- because it does not calculate gradients -- and capitalizes on classical architectures' robustness and Grover's quadratic speedup in high-dimensional search spaces to significantly reduce test loss (58.75%) and improve test accuracy (35.25%), compared to classical NN weight optimization, on small datasets. Unlike most QNNs that are trained on small datasets only, our method is also scalable, as it allows the optimization of deep networks; for an NN with 3 hidden layers, trained on the Digits dataset from scikit-learn, we obtained a mean accuracy of 97.7%. Moreover, our method requires a much smaller number of qubits compared to other QNN approaches, making it very practical for near-future quantum computers that will still deliver a limited number of logical qubits.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.