Papers
Topics
Authors
Recent
2000 character limit reached

Diverse Prompts: Illuminating the Prompt Space of Large Language Models with MAP-Elites (2504.14367v1)

Published 19 Apr 2025 in cs.CL and cs.AI

Abstract: Prompt engineering is essential for optimizing LLMs, yet the link between prompt structures and task performance remains underexplored. This work introduces an evolutionary approach that combines context-free grammar (CFG) with the MAP-Elites algorithm to systematically explore the prompt space. Our method prioritizes quality and diversity, generating high-performing and structurally varied prompts while analyzing their alignment with diverse tasks by varying traits such as the number of examples (shots) and reasoning depth. By systematically mapping the phenotypic space, we reveal how structural variations influence LLM performance, offering actionable insights for task-specific and adaptable prompt design. Evaluated on seven BigBench Lite tasks across multiple LLMs, our results underscore the critical interplay of quality and diversity, advancing the effectiveness and versatility of LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.