Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Detecting Zero-Day Web Attacks with an Ensemble of LSTM, GRU, and Stacked Autoencoders (2504.14122v1)

Published 19 Apr 2025 in cs.CR

Abstract: The rapid growth in web-based services has significantly increased security risks related to user information, as web-based attacks become increasingly sophisticated and prevalent. Traditional security methods frequently struggle to detect previously unknown (zero-day) web attacks, putting sensitive user data at significant risk. Additionally, reducing human intervention in web security tasks can minimize errors and enhance reliability. This paper introduces an intelligent system designed to detect zero-day web attacks using a novel one-class ensemble method consisting of three distinct autoencoder architectures: LSTM autoencoder, GRU autoencoder, and stacked autoencoder. Our approach employs a novel tokenization strategy to convert normal web requests into structured numeric sequences, enabling the ensemble model to effectively identify anomalous activities by uniquely concatenating and compressing the latent representations from each autoencoder. The proposed method efficiently detects unknown web attacks while effectively addressing common limitations of previous methods, such as high memory consumption and excessive false positive rates. Extensive experimental evaluations demonstrate the superiority of our proposed ensemble, achieving remarkable detection metrics: 97.58% accuracy, 97.52% recall, 99.76% specificity, and 99.99% precision, with an exceptionally low false positive rate of 0.2%. These results underscore our method's significant potential in enhancing real-world web security through accurate and reliable detection of web-based attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.