Papers
Topics
Authors
Recent
2000 character limit reached

DataMaestro: A Versatile and Efficient Data Streaming Engine Bringing Decoupled Memory Access To Dataflow Accelerators (2504.14091v1)

Published 18 Apr 2025 in cs.AR

Abstract: Deep Neural Networks (DNNs) have achieved remarkable success across various intelligent tasks but encounter performance and energy challenges in inference execution due to data movement bottlenecks. We introduce DataMaestro, a versatile and efficient data streaming unit that brings the decoupled access/execute architecture to DNN dataflow accelerators to address this issue. DataMaestro supports flexible and programmable access patterns to accommodate diverse workload types and dataflows, incorporates fine-grained prefetch and addressing mode switching to mitigate bank conflicts, and enables customizable on-the-fly data manipulation to reduce memory footprints and access counts. We integrate five DataMaestros with a Tensor Core-like GeMM accelerator and a Quantization accelerator into a RISC-V host system for evaluation. The FPGA prototype and VLSI synthesis results demonstrate that DataMaestro helps the GeMM core achieve nearly 100% utilization, which is 1.05-21.39x better than state-of-the-art solutions, while minimizing area and energy consumption to merely 6.43% and 15.06% of the total system.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.