Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A CMOS Probabilistic Computing Chip With In-situ hardware Aware Learning (2504.14070v3)

Published 18 Apr 2025 in cs.AR and cs.AI

Abstract: This paper demonstrates a probabilistic bit physics inspired solver with 440 spins configured in a Chimera graph, occupying an area of 0.44 mm2. Area efficiency is maximized through a current-mode implementation of the neuron update circuit, standard cell design for analog blocks pitch-matched to digital blocks, and a shared power supply for both digital and analog components. Process variation related mismatches introduced by this approach are effectively mitigated using a hardware aware contrastive divergence algorithm during training. We validate the chip's ability to perform probabilistic computing tasks such as modeling logic gates and full adders, as well as optimization tasks such as MaxCut, demonstrating its potential for AI and machine learning applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: