Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Addressing outliers in mixed-effects logistic regression: a more robust modeling approach (2504.13781v1)

Published 18 Apr 2025 in stat.ME

Abstract: This study introduces an outlier-robust model for analyzing hierarchically structured bounded count data within a Bayesian framework, utilizing a logistic regression approach implemented in JAGS. Our model incorporates a t-distributed latent variable to address overdispersion and outliers, improving robustness compared to conventional models such as the beta-binomial, binomial-logit-normal, and standard binomial models. Notably, our approach models the median of the response variable, presenting a more convenient and interpretable measure of central tendency, which is available in closed form. For comparability between all models, we also make predictions based on the mean proportion; however, this involves an integration step for the t-distributed nuisance parameter. While limited literature specifically addresses outliers in mixed models for bounded count data, this research fills that gap. The practical utility of the model is demonstrated using a longitudinal medication adherence dataset, where patient behavior often results in abrupt changes and outliers within individual trajectories. A simulation study demonstrates the binomial-logit-t model's strong performance, with comparison statistics favoring it among the four evaluated models. An additional data contamination simulation confirms its robustness against outliers. Our robust approach maintains the integrity of the dataset, effectively handling outliers to provide more accurate and reliable parameter estimates.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube