Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Mixed Fractional Information: Consistency of Dissipation Measures for Stable Laws (2504.13423v2)

Published 18 Apr 2025 in cs.OH

Abstract: Symmetric alpha-stable (S alpha S) distributions with alpha<2 lack finite classical Fisher information. Building on Johnson's framework, we define Mixed Fractional Information (MFI) via the initial rate of relative entropy dissipation during interpolation between S alpha S laws with differing scales, v and s. We demonstrate two equivalent formulations for MFI in this specific S alpha S-to-S alpha S setting. The first involves the derivative D'(v) of the relative entropy between the two S alpha S densities. The second uses an integral expectation E_gv[u(x,0) (pF_v(x) - pF_s(x))] involving the difference between Fisher scores (pF_v, pF_s) and a specific MMSE-related score function u(x,0) derived from the interpolation dynamics. Our central contribution is a rigorous proof of the consistency identity: D'(v) = (1/(alpha v)) E_gv[X (pF_v(X) - pF_s(X))]. This identity mathematically validates the equivalence of the two MFI formulations for S alpha S inputs, establishing MFI's internal coherence and directly linking entropy dissipation rates to score function differences. We further establish MFI's non-negativity (zero if and only if v=s), derive its closed-form expression for the Cauchy case (alpha=1), and numerically validate the consistency identity. MFI provides a finite, coherent, and computable information-theoretic measure for comparing S alpha S distributions where classical Fisher information fails, connecting entropy dynamics to score functions and estimation concepts. This work lays a foundation for exploring potential fractional I-MMSE relations and new functional inequalities tailored to heavy-tailed systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.