Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine Learning Decoding of Circuit-Level Noise for Bivariate Bicycle Codes (2504.13043v1)

Published 17 Apr 2025 in quant-ph

Abstract: Fault-tolerant quantum computers will depend crucially on the performance of the classical decoding algorithm which takes in the results of measurements and outputs corrections to the errors inferred to have occurred. Machine learning models have shown great promise as decoders for the surface code; however, this promise has not yet been substantiated for the more challenging task of decoding quantum low-density parity-check (QLDPC) codes. In this paper, we present a recurrent, transformer-based neural network designed to decode circuit-level noise on Bivariate Bicycle (BB) codes, introduced recently by Bravyi et al (Nature 627, 778-782, 2024). For the $[[72,12,6]]$ BB code, at a physical error rate of $p=0.1\%$, our model achieves a logical error rate almost $5$ times lower than belief propagation with ordered statistics decoding (BP-OSD). Moreover, while BP-OSD has a wide distribution of runtimes with significant outliers, our model has a consistent runtime and is an order-of-magnitude faster than the worst-case times from a benchmark BP-OSD implementation. On the $[[144,12,12]]$ BB code, our model obtains worse logical error rates but maintains the speed advantage. These results demonstrate that machine learning decoders can out-perform conventional decoders on QLDPC codes, in regimes of current interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.