Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RL-PINNs: Reinforcement Learning-Driven Adaptive Sampling for Efficient Training of PINNs (2504.12949v1)

Published 17 Apr 2025 in cs.LG, cs.NA, and math.NA

Abstract: Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs). However, their performance heavily relies on the strategy used to select training points. Conventional adaptive sampling methods, such as residual-based refinement, often require multi-round sampling and repeated retraining of PINNs, leading to computational inefficiency due to redundant points and costly gradient computations-particularly in high-dimensional or high-order derivative scenarios. To address these limitations, we propose RL-PINNs, a reinforcement learning(RL)-driven adaptive sampling framework that enables efficient training with only a single round of sampling. Our approach formulates adaptive sampling as a Markov decision process, where an RL agent dynamically selects optimal training points by maximizing a long-term utility metric. Critically, we replace gradient-dependent residual metrics with a computationally efficient function variation as the reward signal, eliminating the overhead of derivative calculations. Furthermore, we employ a delayed reward mechanism to prioritize long-term training stability over short-term gains. Extensive experiments across diverse PDE benchmarks, including low-regular, nonlinear, high-dimensional, and high-order problems, demonstrate that RL-PINNs significantly outperforms existing residual-driven adaptive methods in accuracy. Notably, RL-PINNs achieve this with negligible sampling overhead, making them scalable to high-dimensional and high-order problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.